

JPL ANOMALY ISSUES

Henry B. Garrett

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA, 91109

Space Weather Anomaly Concerns for JPL Robotic Mission

AGENDA

- Overview of Space Weather Anomalies on JPL Missions
- Space Weather Products used by JPL Ops for Anomaly Mitigation and Resolution
- Suggested Improvements in Anomaly Mitigation Procedures for JPL Missions
- Summary

Overview of Space Weather Anomalies on JPL Missions

Space Weather Effects on Ops

SPACE WEATHER EFFECTS

SURFACE CHARGING WAVES SHOLE EVENT UPSET'S MERIALCHREING **ES** е S S S S е е Ε Ε Ep Ε Ε Sp Sp Sp SEP S S

ULTRAVIOLET RADIATION
 INFRARED RADIATION
 SOLAR WIND PLASMA

O NEUTRAL ATMOSPHERE

► E,B FIELDS

IONOSPHERIC PLASMAAURORA PLASMA

TRAPPED RADIATION

— GALACTIC COSMIC RAY

> SOLAR PROTON EVENTS

Z METEOROIDS

W DEBRIS

Legend:

Major Effect

E,e = Europa

X =

Observable Effect

P,p = Pluto

S,s = Solar Probe

(Note: Assessment very dependent on spacecraft design)

Some Examples of Space Weather Effects on JPL Spacecraft Ops

Solar Proton Event (SPE) Effects on Cassini

Lessons Learned: Real Time SPE Observations can Predict Effects on Ops (Cassini Solid State Recorder Upsets)

Space Weather Anomalies on JPL Ops During the 2003 Halloween Storms

- Oct 23: Genesis at L1 entered safe mode. Normal operations resumed on Nov. 3
- Oct 24: Midori-2 Polar satellite failed (Spacecraft Charging...)

 Stardust comet mission went into safe mode; recovered.
- Oct 28: ACE lost plasma observations.

 Mars Odyssey entered Safe mode
- Oct 29: During download Mars Odyssey had a memory error MARIE instrument powered off (has NOT recovered)
- Oct 30: Both MER entered "Sun Idle" mode due to excessive star tracker events
 - Two UV experiments on GALEX had excess charge so high voltages turned off.
- Nov. 6 Mars Odyssey spacecraft commanded out of Safe mode; operations nominal.

Auroral Effects on JPL Ops, Oct. 24, 2003

Lessons Learned: Geophysical Indices Critical to Rapid Anomaly Resolution for JPL Missions

Oct 24: ADEOS-Midori-2 (JPL SeaWinds Instrument) Failed.
Attributed to Spacecraft Surface Charging

Space Weather Effects on Galileo Ops--Radiation

Lessons Learned: Forecasting can affect operations—Galileo ops modified to take account of radiation belt effects

	PD1625-600 GALILEO RADIATION FAILURE SUMMARY					
ID	SECT	TITLE	CATEGORY	SOURCE		FAILURE MECHANISM
1	4.5	Computer Data Subsystem Despun Interface	electronic design	radiation, noise	total dose, dose rate	common mode noise
5	4.4	Computer Data. Subsystem XP-215 Phase Lock Loops	electronic part	radiation	dose rate	noise
6	4.6	Solid State Imaging Subsystem CD4xxxTiming	electronic part	radiation	total dose, dose rate	tming shifts
7	4.7	Solid State Imaging Subsystem TA10599 Opamp	electronic part	radiation	dose rate	package charging
8	4.9	Data Management Subsystem OP133 LED's	electronic part	radiation	total dose	displacement damage
9	4.16	Energetic Particle Detector "CMS" Failing Detector	electronic part	radiation	total dose	dead layer buildup
12	4.11	Attitude & Anticulation Control Subsystem Gyro DG-181 Switch	electronic part	radiation	total dose	
13	4.21	Near Infrared Mapping Spectrometer Grating Failure	electronic design, electronic part	age, radiation		
14	4.13	Attitude & Articulation Control Subsystem Star Scanner	electronic design, electronic part	age, radiation	total dose, tme	photomultiplier tube ageing, browning
25	4.20	Near Infrared Mapping Spectrometer Detector Failure	electronic part, packaging design	radiation, thermal	total dose, tremal cycle	
26	4.25	Photopolarimetry Radiometry Subsystem Loss Channel	electronic part, packaging design	radiation, thermal	total dose, tremal cycle	
15	4.12	Attitude & Articulation Control Subsystem Spin Detector	electronic design, electronic part			
16	4.19	Near Infrared Mapping Spectrometer Memory Corruption	electronic design, electronic part			
17	4.23	Plasma Subsystem Detector Failure	electronic design, electronic part			
27	4.26	Plasma Wave Subsystem Search Coil	electronic part, electronic design, packaging design			

Internal Electrostatic Discharge— Attack of the Killer Electrons...

CHARGED PARTICLE INTERACTIONS PROTON/ELECTRON ENERGY vs PENETRATION DEPTH FOR AL

DISCHARGES IN DIELECTRICS Lichtenberg Pattern

Occurrence Frequency Of Voyager 1 PORs

42 IESD Events on Voyager 1!!!

Space Weather Products used by JPL Ops for Anomaly Mitigation and Resolution

Space Weather Products Used by JPL

Terrestrial

- GOES Products
- Kp/Ap, AE, Dst
- Scintillation Indices
- Atmospheric Models (Atomic Oxygen, Drag)
- Auroral Fluxes
- AE8/AP8, CRRES Models

Solar

- IMF, Plasma (ACE (CIT), Soho (ESA), etc.)
- SPE Models (JPL)

Planetary

- Trapped Radiation Models (JPL)
- Magnetospheres
- Jovian Radio Brightness
- Atmospheric Models
- Ionospheric/Plasmaspheric Models (JPL)
- Auroral Models (JPL)
- Comets (JPL)
- Meteors (JPL)

Dawn Spacecraft Anomaly—an Example

Dawn Anomaly Timeline

DESCRIPTION:

- 21 June GSFC Space Weather Lab sent out predictions of a CME passing near Vesta on the Sun/Earth/Vesta vector on or about 27 June.
- Sunday, 27 June (08:32 UT), Dawn suffered an anomaly prior to its arrival at Vesta.
- When communications with Dawn were established during a planned DSN contact early on June 28, spacecraft was found to be in safe comm mode.
- The spacecraft had autonomously terminated thrusting with the ion propulsion system (IPS) approximately 21 hours earlier.
- Onboard fault protection detected that thrusting had been terminated, and configured the spacecraft into safe comm mode.
- The spacecraft was stable and healthy, with the HGA pointed at Earth and an operating telecomm system.
- Only identified anomaly was low pressure in IPS main and cathode Xe supply plena.

Dawn Gamma Ray and Neutron Detector (GRaND) Instrument Observations

The Dawn GRaND Instrument's background correlates with SPEs and CME high energy particles. *It did not see anything* so apparently the observation that the CME arrived at the same time as the safing event anomaly was only "a very interesting coincidence....".

Instrument

Example: Here GRaND shows gradually increasing energetic particle activity beginning 5-Aug in association with a CME. Such an increase was not seen on 27 June.

Conclusions

- Observed anomalies were fully explained by loss of power to the DCIU1/XVD circuits; No other likely (i.e., single-fault) cause was identified
- Cause was narrowed to a fault in the Over Voltage Protection circuit
- Swapped to DCIU2 and resumed thrusting
- GSFC space weather warnings allowed prediction/recognition of potential space weather anomalies at Dawn
- GSFC SWL prompt response helped eliminate a potential "cause" and permitted narrowing the anomaly resolution study.

Need Space Weather Radiation Criteria for Launch Commit Poll in Countdown to Launch

JPL doesn't launch if the weather's bad...but why have Launch Commit criteria for space weather?

- Critical operations in the first few hours following launch make a spacecraft particularly vulnerable to radiation-induced Single Event Upsets (SEUs) in the spacecraft memory.
- Corrupted memory can delay time-critical operation, such as solar array deployment
- Spacecraft fault protection is typically not at full functionality until the spacecraft is in nominal operating mode.

Suggested Improvements in Anomaly Mitigation Procedures for JPL Missions

JPL Needs

PLASMAS AND SPACECRAFT CHARGING

 FOR SPACECRAFT SURFACE CHARGING, NEED TO MONITOR AND PREDICT THE TIME-VARYING PLASMA ENVIRONMENTS (REAL TIME FORECAST)

PLASMAS/RADIATION BELTS:

- NEED BETTER RADIATION BELT MODELS (BOTH AT EARTH AND THE OUTER PLANETS) FOR MISSION DESIGN (CLIMATOLOGY) AND SHORT TERM "STORM" PREDICTIONS (FORECAST)—CURRENTLY BEGINNING EVALUATION OF AE9/AP9 FOR JPL MISSIONS
- NEED TO INCORPORATE RADIATION FORECASTS INTO JPL MISSION LAUNCH CRITERIA

INTERACTION MODELING:

 MANY SPACE WEATHER MODELS NOW EXIST BUT NEED TO BE INTEGRATED TO FORECAST SYNERGISTIC EFFECTS ON SPACE OPS LIKE THE EVIRONMENTAL WORKBENCH PROGRAM (CLIMATOLOGY AND REAL TIME FORECAST)

Summary

WHY DO WE CARE?

- SPACE WEATHER EFFECTS HAVE HAD SERIOUS IMPACTS ON JPL MISSION OPS AND ARE POTENTIALLY EXPENSIVE PROBLEMS
- THERE ARE STILL MANY UNKNOWN EFFECTS OF SPACE WEATHER ON SPACE OPS
- PROPER DESIGN AND FORE-KNOWLEDGE (CLIMATOLOGY AND REAL TIME FORECAST) CAN LIMIT IMPACT OF SPACE WEATHER ON OPS

WHAT CAN WE DO?

- DESIGN: EVALUATE THE MISSION AND OPS PLANS USING AN INTEGRATED APPROACH THAT INCLUDES THE SPACE WEATHER EFFECTS
- BUILD: REQUIRE ADEQUATE TESTING (RECOMMEND ENGINEERING TEST MODEL!) IN THE RELEVANT SPACE WEATHER CONDITIONS UNDER REALISTIC OPS
- LAUNCH: DEFINE SPACE WEATHER LAUNCH CONDITIONS FOR JPL MISSIONS
- FLIGHT: DURING FLIGHT, EVALUATE EFFECTIVENESS OF FORECASTS AND MITIGATION METHODOLOGIES ON OPS
- POST FLIGHT: USE OPS EXPERIENCE TO UPDATE MODELS AND DESIGN TECHNIQUES

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.